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Abstract

The application of machine learning (ML) algorithms for analyzing,
modelling, and visualizing geospatial data has seen remarkable growth
in recent years. Many ML techniques have proven to be both effective
and efficient in addressing complex challenges within the geosciences.
Selected topics on adaptation and application of ML to environmental
data are briefly discussed in this research.

1 Introduction

This paper focuses on key aspects of applying machine learning to
the analysis and modelling of spatial environmental data. It empha-
sizes a comprehensive methodology that encompasses from data col-
lection (monitoring network analysis, design and redesign), intelligent
exploratory data analysis and visualization, via ML models training
and evaluation to understanding and communication of the results for
informed decision making (Kanevski & Maignan, 2004; Kanevski et al.,
2009). The main components of this methodology are illustrated in fig-
ure 1 (p. 132), with further details provided in the subsequent sections.

In practice, ML should be widely utilized across all phases of data-
driven modelling. It facilitates comprehensive data exploration, se-
lection of relevant variables, visualization of high-dimensional and
large datasets, pattern recognition, adaptive modelling, and result inter-
pretability. Numerous excellent books cover the concepts and theories
of ML algorithms, as well as their applications across various domains
(see, for example Bishop & Bishop, 2024; Cherkassky & Mulier, 2007,
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Hastie et al., 2021; Haykin, 2009). Additionally, an abundance of re-
sources on ML programming and modern open-access packages is now
available, further accelerating development and broadening the user
community (James et al., 2021; Kuhn & Johnson, 2013).

Recently, a new and rapidly evolving field of research, geospatial
data science, has emerged as an interdisciplinary domain that integrates
geoinformatics, geostatistics, machine learning, network science, and
more, see, for example (Gaur et al., 2023; Pebesma & Bivand, 2023).
This field encompasses a broad range of applications across diverse
domains, including geography and urban planning, earth sciences, en-
vironmental science, meteorology and climate science, ecology, and
beyond.

Geospatial data present several significant challenges due to their
inherent characteristics. Unlike traditional datasets, they often exhibit
spatial autocorrelation (Jemeljanova et al., 2024; Kattenborn et al.,
2022), meaning that observations are not independently and identically
distributed (i.i.d.), which complicates standard statistical and machine
learning approaches (Linnenbrink et al., 2023). Additionally, spatial
clustering and preferential sampling can introduce biases, affecting
model development, evaluation, and the definition of validity domains
(Brus, 2022; Meyer & Pebesma, 2021; Schratz et al., 2019).

Moreover, causal analysis in spatial data is particularly challenging
due to confounding spatial dependencies and intrinsic uncertainties,
making robust inference difficult (Akbari et al., 2023; Gao et al., 2022).

The interpretability of ML-based data analysis and predictions is also
becoming increasingly critical in geoscience applications, particularly
in studies related to climate, environmental risks, natural hazards, and
renewable energy assessments (Jiang et al., 2024).

Addressing these challenges requires the development of specialized
methodologies to ensure accurate modelling, reliable predictions, and
informed decision-making in geospatial applications.

Prof. F. Bavaud has made important contributions to geospatial data
science, particularly in developing innovative algorithms and method-
ologies (Bavaud, 2009, 2014, 2024; Guex et al., 2023). His work effec-
tively combines theoretical rigour with practical applications, bridging
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the gap between fundamental research and real-world challenges.

1.1 Why machine learning?

The application of machine learning in environmental data analysis
offers numerous benefits that enhance data processing and modelling
while addressing complex environmental problems. Here are several
key advantages:

— ML algorithms are powerful universal non-linear modelling tools.
They can model data with high precision, adapting to a wide range
of structures and variability.

— ML exhibit strong generalization capabilities: they make accurate
predictions on new unseen (testing) data.

— ML models can handle big and complex data sets from diverse
sources.

— ML techniques perform well with high-dimensional data: many
algorithms have been specifically developed for non-linear dimen-
sionality reduction and feature selection.

— ML algorithms can be integrated into automatic spatio-temporal
environmental data processing and monitoring.

— ML models have already demonstrated their efficiency and use-
fulness in numerous environmental applications (weather, climate,
natural hazards, pollution, renewable resources, ecology, biodiver-
sity, etc.).

Despite their significant success, the use of ML algorithms can en-
counter various challenges. ML heavily depends on the quality and
quantity of data; in real-world applications, training, selecting, and
evaluating ML models are non-trivial tasks. Additionally, making pre-
dictions and forecasts that account for uncertainties is often difficult.
The interpretability and explainability of ML models remain active
areas of contemporary research (Jiang et al., 2024). It is also crucial to
note that the effective application of ML requires a deep understanding
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of algorithms, a grasp of underlying assumptions, and collaboration
with domain experts.

1.2 Model-centric and data-centric machine learning

In the field of artificial intelligence (Al), there are two primary ap-
proaches to improve the results: model-centric and data-centric, often
called MCAI and DCAI. Each focuses on different aspects of ML
modelling and has its particular advantages.

Model-centric focuses on model architecture and strengthening the
algorithms, in particular on model selection and evaluation, hyper-
parameters tuning, optimization techniques, combining models, ensem-
ble learning (Bartz et al., 2023; Bishop & Bishop, 2024; Hastie et al.,
2021; Montavon et al., 2012). Selection of ML model appropriate to
data and objectives can help to achieve state-of-the-art results in many
applications. Until recently, model-centric modelling has dominated in
developments.

Nowadays, the role of data in ML modelling is promoted by the fast
developing concept of data-centric ML (Mabhalle et al., 2024). This
demonstrates an important shift from model strengthening to data qual-
ity and reliability.

In data-centric approach the focus is on systematic improvement of
data quality and quantity in the process of ML training and evaluation.
Data are considered as a dynamic object, while model is usually fixed.
Fundamentally there are two possibilities: either improving training
dataset using available data or collection/simulation (data augmentation)
of additional data.

There are many tools and techniques that are a part of data-centric
approach: missing values treatment, outliers/anomalies detection and
removal, data validation and correction of errors, feature engineering
and data reduction (features and/or instances selection), active learning
(guided data selection), interactive visualization. All these techniques
improve the quality and quantity of training and testing data sets giving
rise to better predictions and reducing errors.

One of the first question in the analysis concerns data representativity,
i.e., how available data represent the phenomena under study? In
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spatial statistics this is mostly related to data clustering and preferential
sampling resulting in biases in estimates and predictions, (Chiles, 2012;
Kanevski, 2013). In ML, understanding the topology of the input feature
space is critical for quantifying its spatial and dimensional resolution,
as well as for defining the validity domain (Kanevski, 2013).

Empirically it was shown that cleaning and refining data can result
in better model performance compared to just increasing the model
complexity and optimization.

Let us note that training multiple models with different origins for
the same task yields valuable insights into the data, improves modelling
and enriches the interpretation of results.

2 Methodology

Our experience on application of ML to environmental data has resulted
in the development of a generic methodology pointing out the most es-
sential phases of the study, figure 1. First, let us precise some important
characteristics of environmental data justifying the use of advanced ML
techniques.

2.1 Environmental data

Environmental data are an interesting domain of ML application for
several reasons, in particular: 1) quantity (small, large and big) and
diverse quality; 2) non-linearity; 3) high spatio-temporal variability; 4)
dimensionality (often environmental problems are considered in high
dimensional feature spaces); 5) noise and uncertainties; 6) presence of
extreme values.

Several fundamental problems commonly encountered in environ-
mental data studies can be efficiently addressed by well-developed basic
machine learning models, including: clustering — identifying similar
groups in data; classification — analysis and prediction of categori-
cal/discrete data; regression — analysis and prediction of continuous
data and probability density function modelling and prediction, which
plays a central role in environmental risk assessment.
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FIGURE 1 — Generic methodology of environmental data ML analysis and modelling.
Data++ — raw, reduced and augmented data sets; IEDA — intelligent exploratory data
analysis; MNA — monitoring network analysis; UL/SL — unsupervised/supervised
learning.

2.2 Data exploration and pre-processing

Exploratory data analysis (EDA) and data pre-processing play a critical
role in ML modelling, as the efficacy of data treatment and the results
are significantly influenced by the quality and quantity of the input data.
They help to better understand the original data and phenomena under
study as well as in a proper selection of modelling tools relevant to
the objectives of the study. Traditional (EDA) includes techniques to
summarize data statistical properties, often using visualization tools,
without modelling or making prior hypothesis. It is interesting to note
that modern “data science” has its roots in classical EDA (Donoho,
2017).

Contemporary intelligent exploratory data analysis IEDA) integrates
tools and models from statistics, machine learning, and data visualiza-
tion (Martinez et al., 2022). These tools assist in detecting patterns,
quantifying predictability, and constructing the most relevant input
space for predictive learning. Efficient and appropriate IEDA is a cru-
cial component of successful data-driven modelling.

Data pre-processing is a key component of IEDA. In addition to
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standard techniques such as scaling and normalization, we can highlight
several other important methods, including the treatment of missing
and extreme values, outlier detection, and feature engineering. Fea-
ture engineering involves transforming existing features and creating
new ones using domain knowledge to enhance modelling and improve
results interpretation. Other processes include data augmentation and
splitting the dataset into training, validation, and testing subsets taking
into account properties of spatio-temporal data (data clustering, biases,
spatial correlations and dependencies) (Kattenborn et al., 2022).

2.3 Data visualization and visual analytics

The importance of visualization in data analysis was well recognized
already long time ago by John Tukey (1985): “There is nothing better
than a picture for making you think of questions you had forgotten to
ask (even mentally)” (Friedman & Stuetzle, 2002, p. 1629). In envi-
ronmental studies, maps are among the most widely used visualization
techniques, effectively summarizing results to support decision-making.

Recently, the field of data visualization has evolved into distinct re-
search domains — visual analytics and visual data mining (Andrienko
et al., 2020). Interactive visualization plays a significant role at all
stages of environmental data study: from data collection, model con-
struction and learning to the results communication. High dimensional
and multivariate data before being visualized usually are processed
by applying algorithms and tools for dimensionality reduction, feature
selection, projections, etc. (Kuhn & Johnson, 2019; Lee & Verleysen,
2007). Raw high-dimensional data can be visualized and analyzed using
popular techniques like parallel coordinates (Inselberg, 2009). Recent
advancements in the field of high-dimensional big data visualization
have been supported by both algorithmic innovations and hardware
improvements, enabling more efficient processing and interpretation of
complex datasets.

2.4 Feature selection and dimensionality reduction

The construction of a high-dimensional input feature space relies on
three primary sources: 1) expert knowledge of the phenomena and
objectives of the study, 2) a critical analysis of existing literature, and
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3) feature engineering techniques. However, it is often unclear whether
this feature space is comprehensive or contains redundancies. As a
result, the input space may include relevant, irrelevant, and redundant
features. Therefore, the application of unsupervised and/or supervised
feature selection and feature extraction algorithms is essential. These
methods not only help reduce dimensionality but also enhance the
speed and quality of modeling, while improving interpretability and
visualization. (Bolén-Canedo et al., 2015; Guyon & Kacprzyk, 2006;
Kuhn & Johnson, 2019; Lee & Verleysen, 2007).

There are three basic approaches to feature selection (FS): 1) filter
methods, which assess feature relevance independently of machine
learning models; 2) wrapper methods, which evaluate subsets of features
based on model performance; and 3) embedded methods, where feature
selection is integrated into the training process. The choice of most
appropriate FS methods depends on several factors, including data
complexity, available computational resources, and the specific model
being utilized, since different models may produce varying subsets of
features.

Another essential aspect of FS methodology is the concept of in-
trinsic dimension (ID) of data (Lee & Verleysen, 2007). Numerous
methods exist for estimating ID (Camastra & Staiano, 2016). A novel
ID estimator based on the multipoint Morisita index introduced initially
for spatial data clustering (Morisita, 1959) was proposed in (Golay &
Kanevski, 2015). It was demonstrated how Morisita index can be uti-
lized in FS for supervised regression tasks (Golay et al., 2017) and for
reducing redundancy in data (Golay & Kanevski, 2017). This research
gave an intriguing connection between classical spatial statistics, fractal
concepts and contemporary machine learning.

It is important to underline that a well-defined input space in model-
ing spatial, temporal, or spatio-temporal data can significantly enhance
model performance, even when using relatively simple approaches.
Conversely, a poorly constructed feature space can lead to suboptimal
results, regardless of the complexity or sophistication of the models
employed.
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3 Machine learning modelling

ML models rely on two types of parameters: hyper-parameters and in-
ternal parameters. Hyper-parameters are set by the user before training,
while internal parameters are estimated during the training process. For
instance, in a multilayer perceptron (MLP), the number of hidden layers
and the number of neurons in each layer are hyper-parameters. In con-
trast, the weights of the connections are computed through optimization
algorithms during training.

Fundamentally, learning from data involves two significant steps:
model selection and model evaluation. To facilitate these processes,
the data are divided into training, validation, and testing subsets. The
splitting of geospatial data is a non-trivial task and remains an active
area of research (Linnenbrink et al., 2023; Meyer & Pebesma, 2022).

The training subset is used to determine the model’s internal parame-
ters, while the validation subset helps identify the optimal combination
of hyper-parameters, completing the model selection phase. The test
subset is then employed to evaluate the performance of the selected
model. The test error provides an estimate of the generalization er-
ror, reflecting the model’s performance on new unseen data (Bishop &
Bishop, 2024; Hastie et al., 2021; Kanevski et al., 2009).

A variety of optimization techniques, e.g., family of gradient descent,
are utilized to effectively navigate the solution space and identify op-
timal or near-optimal parameters for the model. The selection of the
cost function is critical, as it influences not only the learning process
but also the model’s generalization ability to test data.

In more complex scenarios, constraints may be introduced to the
optimization problem to account for real-world limitations, for example,
expert knowledge, or constraints imposed by physical laws (Karniadakis
et al., 2021).

To enhance model performance and prevent overfitting, various ef-
fective regularization techniques are also employed (Bishop & Bishop,
2024; Hastie et al., 2021; Haykin, 2009). Regularization helps to con-
strain model complexity, ensuring that the model not only explains
training data but generalizes well.

One of the fundamental questions in data-driven modelling is whether
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there exists useful and structured information (i.e., patterns) within the
data. Specifically, we seek to determine if the data are predictable
within a given input feature space. In the field of geostatistics, this
discrimination (pattern — no pattern) can be achieved through the ap-
plication of variography. When a variogram exhibits a pure nugget
effect, it indicates the absence of spatial correlations, signifying the
lack of patterns in the data (Chiles, 2012; Kanevski & Maignan, 2004;
Kanevsky et al., 1996).

To further assess the presence of patterns, researchers can shuffle
the data, resulting in a dataset that maintains the same distribution but
destroyed any inherent patterns. Such shuffled datasets serve as control
sets, allowing us to evaluate how the model reacts to data lacking of
patterns.

A separate and essential question deals with the estimation of the
noise in data before modelling. Having this information, we can better
perform modelling, avoid overfitting and contribute to the interpretabil-
ity. There are several non-parametric approaches capable of performing
this task (Devroye et al., 2018; Liitiainen et al., 2009).

In summary, data can be represented as: data = information + noise
(unexplained_variability). The goal of modelling is to extract the infor-
mation while ensuring that the residuals consist solely of noise. One
effective method to achieve this is to shuffle the raw data and the resid-
uals and apply the same analytical approach.

4 Conclusions

Properly applying machine learning in environmental modelling re-
quires deep expertise in both machine learning techniques and the
specific data domain. Once the original problem is appropriately re-
formulated in terms of machine learning, a wide range of models can
be employed, including Gaussian processes, random forests, gradient
boosting machines, support vector machines, artificial neural networks,
deep learning and graph neural networks, among others. These machine
learning models are well-developed, optimized, and extensively tested
in real-world applications. They are implemented in efficient packages
available in R, Python, and other programming languages.
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Machine learning is advancing very rapidly, changing fundamentally
research domains and practical applications. The integration of open-
ness and reproducibility in modern science makes datasets and codes
accessible, which attracts new researchers and accelerates innovation.

To conclude, let us recall some current trends in ML application in
environmental studies:

— Nowadays deep learning is an extremely popular approach in
environmental applications of machine learning. It drives interest
to modern ML and its wide use in applications.

— Physics-informed ML and similar approaches integrate domain
expertise and fundamental theories into machine learning models,
significantly enhancing their accuracy and reliability in scientific
applications.

— Causality. By leveraging ML, researchers have made substantial
progress in identifying causal relationships, enabling a deeper
understanding of complex systems and improving predictive capa-
bilities (Peters et al., 2017; Runge et al., 2019).

— ML models, in particular deep learning models, are often criticized
as “black boxes” due to their complexity and lack of transparency.
Recent advancements in Explainable Al (XAI) focus on making
these models more interpretable and transparent. XAI aims to
bridge the gap between the power of complex ML models and the
need for clear, understandable explanations (Molnar, 2018).

— Methodological and practical developments and improvements in
data-centric approach are important parts of current innovations in
ML.

— Uncertainties quantification and visualization for better environ-
mental risk assessments and intelligent decision making.

And finally, ML is a very useful and stimulating approach in contem-
porary science worth learning and applying.
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