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Abstract

We present a general, classical, framework of spatial clustering which
can be applied to various textual objects (e.g. character n-grams,
words, sentences). This framework proposes to cluster objects ac-
cording to users defined linguistic similarity, while keeping a spa-
tial coherence of objects among clusters. Two methods are derived
from this formalism: SpatialWord, which applies to word-tokens,
and SpatialSent, operating on sentences, which both balance between
semantic similarities of objects and their position along the textual
sequence. We show that these unsupervised methods, along with
semi-supervised variants, can perform jointly two operations often
achieved individually by methods in literature: (1) the extraction of a
desirable number of topics from a document along with list of words
to interpret them; and (2) the textual segmentation of the document
reflecting these extracted topics. Case studies show that these methods
perform competitively against state-of-the-art methods on baseline
datasets.

1 Introduction

Automatically revealing topics in a document has been of great value
for domains such as information retrieval, question answering or digital
humanities, as it can effectively extract information from a document
without actually reading it (distant reading). Historically, topic model-
ing approaches, such as Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) or Non-negative Matrix Factorization (NMF) (Arora et al., 2012),
considered documents as bags-of-words, and supposed that similar
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topics are found in documents having comparable vocabulary usages.
These approaches give affinity weights (e.g. probabilities) to words
depending on the topic, which allow its identification, but without tak-
ing into account one of the main arrangements made by authors in
their text: topics are generally found in coherent, contiguous passages.
Retrieving passages addressing a particular extracted topic is generally
tedious with such approaches, as contiguous words can belong to very
different topics. By contrast, text segmentation methods (Choi, 2000;
Eisenstein & Barzilay, 2008; Glavaš et al., 2016; Koshorek et al., 2018;
Riedl & Biemann, 2012), which are also used to automatically extract
information from documents, mainly use the structure of the text, i.e.
the relative position of textual elements (tokens, sentences, paragraphs)
in the sequence. They generally use some detection of semantic shift to
place breakpoints in documents, resulting in a segmentation that can re-
flect the topical structure intended by the author. However, unlike topic
modeling approaches, these methods generally do not label the resulting
segments, and are unable to quickly summarize the main topics found
in a document with lists of most used words. While methods combining
approaches, i.e. finding a textual segmentation and assigning labels to
segments, are obviously valuable, they are rare to find. Some works use
segmentation with a combined text classification (Agarwal & Yu, 2009;
Arnold et al., 2019; Chen et al., 2009; Tepper et al., 2012), using shared
knowledge over the whole corpus, but none, to our knowledge, use an
unsupervised approach on a single file.
We propose here to use a very general and flexible framework based
on spatial autocorrelation, originally used in Bavaud et al. (2015) and
Ceré & Bavaud (2018) and previously inspired from Anselin (2010)
and Cressie (1993), which allows spatial clustering methods of vari-
ous textual objects, along with semi-supervised classification variants.
Methods derived from this formalism are able to extract topics on a
single document, and can be tuned to force a spatial coherence of these
topics in the text, hence finding segments of text covering each topic.
They can be applied to different textual objects: character n-grams,
word-tokens, sentences, paragraphs; as long as two quantities are de-
fined on them: (1) a similarity (or dissimilarity) between elements,
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which can reflect semiotic, phonological, or semantic affinities between
textual objects; (2) a proximity structure, defining how elements re-
late to each others in the textual sequence. The proposed framework
applied on n objects with m groups given will result in a (n × m)
fuzzy membership matrix, noted Z = (zig), verifying zig ≥ 0 and∑

g zig = 1, where zig reflects the membership percentage of object
i in group g. Along with the number of desired groups m, methods
have two main hyperparameters, α and β, whose tuning can balance,
on one hand, between the importance of the similarity of items vs their
proximity, and, on the other hand, between the fuzziness vs the crispi-
ness of group memberships. In case studies, we illustrate two methods
derived from this formalism: a semantic clustering of word-tokens and
a semantic clustering of sentences in a given document, along with their
semi-supervised classification variants. We show that these methods
can be used on topic clustering and text segmentation tasks, extracting
interpretable topics along with text segments that cover them. For these
tasks, our methods are compared with cutting-edge methods on gold
standard datasets, showing that, while not state-of-the-art, they can
compete against the best methods. Section 2 explains the framework
used by our methods, section 3 explores case studies, and section 4
draws general conclusions. All datasets, Python scripts and results can
be found in the Github repository of the article.1

2 Formalism

2.1 General framework
2.1.1 Dissimilarity and exchange matrices
While this article focuses on semantically clustering word-tokens or
sentences, the framework used here can be defined in very general
terms, as found in, e.g., Bavaud et al. (2015) and Ceré & Bavaud (2018).
Consider n objects, indexed by i ∈ {1, . . . , n}, with their vector of
relative weights f = (fi), where fi > 0 and

∑
i fi = 1, and the

following matrices:

– An n × n symmetric squared Euclidean dissimilarity matrix

1 https://github.com/gguex/SemSim_AutoCor.
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D = (dij), verifying dij ≥ 0, containing pairwise dissimilari-
ties between these objects.

– An n×n symmetric matrix of joint probabilities E = (eij), called
exchange matrix, verifying eij ≥ 0 and ei• = e•i = fi (“•” refers
to a sum over the replaced index), containing spatial relationships
between objects. Sometimes, we use the associated Markov chain
transition matrix W = (wij), defined with wij := eij/fi. The
margins of this matrix must contain object weights in order for the
functionals to be formally defined.

2.1.2 Membership matrix and functionals
A fuzzy clustering of these n objects into m groups can be defined by a
n×m membership matrix Z = (zig), with zig ≥ 0 and zi• = 1, whose
components represent the membership of object i to group g. The
membership matrix defines the relative group weights vector ρ = (ρg),
with ρg :=

∑
i fizig and m vectors of within-group distribution

fg = (fg
i ) with fg

i := fizig/ρg. Different functionals can be computed
from a membership matrix Z.

The within-group inertia is defined as

∆W [Z] :=
∑

g

ρg∆g where ∆g =
1

2

∑

ij

fg
i f

g
j dij . (1)

A low within-group inertia reflects homogeneity between objects of the
same group, as defined by the dissimilarity matrix D = (dij).

The generalized cut reads

Cκ[Z] :=
∑

g

ρ2g − e(g, g)

ρκg
where e(g, g) :=

∑

ij

eijzigzjg . (2)

A low generalized cut functional indicates strong neighborhood
relationships between tokens of the same group, as defined by the
exchange matrix E = (eij). The hyperparameter κ ∈ [0, 1] allows
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us to interpolate objects the N-cut objective (Shi & Malik, 2000)
when κ = 1 and the modularity criterium (Newman, 2006) when κ = 0.

The token-group dependency can be expressed by the mutual informa-
tion

K[Z] :=
∑

ig

ρgf
g
i log

(
fg
i

fi

)
=
∑

ig

fizig log

(
zig
ρg

)
(3)

which is low if distributions fg
i correspond to f i, i.e. fg

i are independent
of group g. Therefore, low mutual information indicates fuzziness in
group memberships.

Finally, by combining all previous functionals, we can define the free
energy with

F [Z] := β∆W [Z] +
α

2
Cκ[Z] +K[Z] . (4)

Searching the membership matrix Z minimizing this functional results
in a fuzzy clustering of objects depending on hyperparameters α, β and
κ. An interpretation of hyperparameter effects in the case of textual
data can be found in section 2.2.4.

2.1.3 Finding a local minima

Canceling the derivative of the free energy with respect to zig under the
constraints zi• yields the minimization condition

zig =
ρg exp(−hig)∑
h ρh exp(−hih)

(5)

where

ρg[Z] :=
∑

i

fizig (6)

hig[Z] := βdgi + αρ−κ
g (ρg −

∑

j

wijzjg)−
ακ

2
ρ−κ−1
g

(
ρ2g − e(g, g)

)

(7)
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with dgi =
∑

j f
g
j dij −∆g the squared Euclidean dissimilarity from i to

the centroid of group g. These Equations define an iterative procedure
converging to a local minimum for F [Z]: a random membership matrix
is taken as Z0, ρtg and htig are computed with (6) and (7) respectively,
and Zt+1 is given by (5).2 Pseudo-code for the algorithm can be found
in appendix A.1.

2.1.4 Semi-supervised framework
Working with the membership matrix Z for objects allows us to easily
adapt the algorithm in a semi-supervised framework. Let T be the group
of tagged objects, which consists in m disjoint subgroups T = ∪m

g=1Tg,
where Tg contains objects which should be in group g. The initial
membership values z0ig for tagged object i ∈ T are then set to :

z0ig =

{
1 if i ∈ Tg
0 otherwise

(8)

Moreover, at the end of each iteration, the tagged objects are reset to
their initial values z0ig, forcing them to be in their respective group. If the
generalized cut functional is high enough (i.e. α in (4) is large), these
tagged objects should act as anchor points, “spreading” their labels to
their neighbors.

2.1.5 Complexity and scaling
The algorithm complexity is O(n2m), which can be problematic in case
of large datasets. However, this issue can be alleviated by decomposing
the dataset into small overlapping blocks, and running the algorithm
on each of them independently, while transferring the labels from one
block to another by fixing membership of objects at their intersection.
Formally, our dataset D can be decomposed into p blocks Bk of size
nb < n, with D = ∪p

k=1Bk and Bk ∩ Bk−1 ̸= ∅, ∀k ∈ {2, . . . , p}.
We first find the memberships zB1

ig of the objects in the group B1, and

2 During applications, Z0 is picked with fg close the uniform distribution for every
g, and the new membership matrix is computed with λZt+1 + (1 − λ)Zt with
λ ∈ (0, 1] a decreasing adaptative learning parameter which allows the algorithm
to reach the bottom of “valleys” of high gradients.
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proceed sequentially by fixing zBk
ig = z

Bk−1

ig , ∀i ∈ Bk ∩ Bk−1. The
algorithm is then O(n2

bpm), but some performance is lost in the pro-
cess. We examine the speed/performance trade-off of this procedure in
Section 3.4.3.

2.2 Textual data

The framework of section 2.1 can be adapted to textual data, where
objects can be, e.g., character n-grams, word-tokens, sentences, or para-
graphs, as long as we can define: (1) dissimilarities reflecting linguistic
differences between items; and (2) a spatial proximity structure, in-
dicating how objects interact with each other in the textual sequence.
The relative weights fi for textual objects can be defined as uniform or
proportional to their length (e.g. the number of words in a sentence).

2.2.1 Semantic (dis)similarities
When working with textual objects, the matrix D should represent
linguistic dissimilarities between objects, which can be defined no-
tably at the semiotic, phonological, or semantic level, depending on
objects and applications. We can generally construct these dissimi-
larities from external sources, giving either dissimilarities or similar-
ities. Dissimilarities dij can be obtained from similarities sij with,
e.g., dij = maxkl skl − sij . In this article, we exclusively work with
word-tokens and sentences, and with dissimilarities defined at the se-
mantic level. For tokens, semantic similarities can be constructed with
WordNet (Fellbaum, 1998), type-based Word Embeddings (Bojanowski
et al., 2017; Mikolov et al., 2013a; Pennington et al., 2014), or Trans-
formers (Devlin et al., 2019). Note that when using type-based Word
Embeddings, these dissimilarities are defined between types, and every
pair of tokens having the same signature of types will yield the same
dissimilarity. If we consider sentences, there are also many models
permitting to build semantic similarities, such as Sentence Embeddings
(Mikolov et al., 2013b; Reimers & Gurevych, 2019).

2.2.2 Spatial structure
Note that the structure of textual objects is a sequence that can be
indexed by i ∈ {1, . . . , n}. The spatial structure, encoded by the ex-
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change matrix E, should reflect how these objects relate to each other
in the textual sequence. It could be crafted carefully, by using, e.g.
a syntactic dependency parser in order to weight token relationships
accordingly. However, we chose to construct it uniquely on the neigh-
borhood relationships as it already shows satisfying results. Note that
because of the constraint ei• = e•i = fi and because of boundary ef-
fects, the computation of these matrices is not trivial, even for uniform
weights. Our suggestion is to compute textual exchange matrices as
proposed in Ceré & Bavaud (2018), also seen in A.2.

1. The uniform exchange matrix EU(r) with range r ∈ N, where eU(r)
ij

is constant for j ∈ [i− r, i+ r] and 0 otherwise. This matrix can
be computed with the Metropolis-Hastings algorithm.

2. The diffusive exchange matrix ED(t), closely related to the diffu-
sion map kernel (Nadler et al., 2005), with diffusive time factor
t > 0. For a large enough t, the strength of links between i and its
neighbors j will be normally shaped, thus exponentially decreasing
with |i− j|.

The choice between EU(r) and ED(t), as well as their ranges r or t,
can be considered as hyperparameters to be tuned. Computations for
these matrices are given in Appendix A.2.

2.2.3 Topic interpretation
When semantic dissimilarities are used, the resulting clusters can be in-
terpreted as topics. When using word-tokens as objects, the membership
matrix Z has the following interpretation :

zig = P(Ti = g) (9)

where Ti is the variable containing the topic of token i. Note that with
our algorithm, a token can be a part of multiple topics (fuzziness) and
also depends on its neighborhood (spatial component), reflecting the
fact that generally, a particular topic covers several contiguous textual
objects.
When using a topic modeling approach, in order to interpret topics, we
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are interested in the probability of each word-type constituting topics
or, conversely, the probability of being in a certain topic when using a
specific word-type. In other words, we need to compute:

P(T = g|W = w) = “Probability to be in topic g when the type is w”
(10)

P(W = w|T = g) = “Probability to draw type w when the topic is g”
(11)

where T is the variable containing the topic and W the variable contain-
ing the word-type for a randomly drawn token in the text. It is possible
to express these quantities with the components of the matrix Z and
using the variable Wi, containing the word-type at position i:

P(T = g|W = w) =
1

nw

∑

i|Wi=w

P(Ti = g) =
1

nw

∑

i|Wi=w

zig (12)

P(W = w|T = g) =
P(T = g|W = w) · P(W = w)

P(T = g)

=

1
nw

∑
i|Wi=w P(Ti = g) · nw

n
1
n

∑
i P(Ti = g)

=

∑
i|Wi=w zig

z•g
(13)

where nw designates the number of occurrences of word-type w. In
case studies, section 3.4.1, we see that Equation (12) helps to reflect the
vocabulary specificity of each topic, whereas Equation (13) gives clues
about the writing style of each topic, which can remain similar among
topics in some cases.

2.2.4 Hyperparameters effects

The result of the clustering depends on hyperparameters α, β and κ in
(4). Increasing α relatively to β favors groups containing long sequences
of textual objects, while increasing β for a fixed α strengthens linguistic
homogeneity inside clusters. The limit β → ∞ corresponds to the
case of a K-means clustering using only the linguistic dissimilarities
defined on textual objects. Decreasing both α and β increases the
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fuzziness of groups, resulting in a mixture of groups defined over textual
objects. Figure 1 gives insights on how the clustering behaves depending
on α and β. The hyperparameter κ controls the spatial objective by
interpolating between the N-cut objective and the modularity criterion,
and its effect is more difficult to interpret. These three hyperparameters
are tuned with grid search in case studies.

FIGURE 1 – Semantic clustering of word-tokens into 3 groups on a part of a MANI-
FESTO file (see section 3). Left: β is high relatively to α, resulting in small sequences.
Middle: α is low relatively to β resulting in large sequences. Right: α and β are low,
resulting in high group fuzziness, represented by the mixture of colors.

3 Case studies

3.1 Tasks

In case studies, in order to compare methods derived from our formal-
ism with existing ones, we are interested in how they perform in two
particular tasks, namely topic clustering and text segmentation.
Topic clustering, to our knowledge, is not a term used in literature, al-
though existing methods, such as LDA (Blei et al., 2003) or NMF (Arora
et al., 2012), can be adapted to perform it. In this article, we define it
as the task of assigning groups to textual objects, with unsupervised
methods, so that objects in the same group express a similar topic. Un-
like topic modeling approaches, an affinity matrix is computed between
every word-token and topic, taking into consideration the wor-token’s
position in text, and not only between word-types and topics. Validation
of this task must use unsupervised measures of adequation, such as the
Normalized Mutual Information (NMI) (Strehl & Ghosh, 2002) used
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here. Note that measures of self-coherence, such as the Perplexity often
used in topic modeling, do not apply here as our model is not generative.
Section 3.4.1 explores the topic clustering capabilities of our methods.
By contrast, the text segmentation task is well known in literature
(Arnold et al., 2019; Chen et al., 2009; Choi, 2000; Eisenstein & Barzi-
lay, 2008; Glavaš et al., 2016; Koshorek et al., 2018; Riedl & Biemann,
2012). It generally consists in finding breakpoints in a text, such that
the resulting segments address different topics. Supervised and unsuper-
vised methods for this task exist. Generally, apart from a few exceptions
(e.g. Arnold et al., 2019; Chen et al., 2009), these methods do not la-
bel segments with a topic. Hence, the result does not indicate if the
document consists of two alternating topics, a number of topics equal
to the number of segments, or a situation in-between. Validation is
generally made through the use of the Pk index (Beeferman et al., 1999)
or the Window diff (WD) index (Pevzner & Hearst, 2002), measuring if
separation marks between segments correspond to ground truth. Section
3.4.2 will compare the text segmentation performances of our algorithm
against cutting edge methods.
To our knowledge, no other algorithm performs both tasks at the same
time in an unsupervised way, especially without using contrastive in-
formation between documents. While sharing information over several
documents can be an asset in some cases, and usually give better per-
formances, using our method enables the user to find text segments,
with their assigned topics (with word-types defining them, see section
2.2.3), in a single document without any training (though the choice of
hyperparameters can still be subject to tuning).

3.2 Corpora

While it is possible to create artificial datasets to validate both topic
clustering and text segmentation tasks (Choi, 2000), we favor here real
datasets, as methods seem to give over-confident results on artificial
ones (Glavaš et al., 2016). We will use five datasets, which can all be
found in our Github repository.
The MANIFESTO dataset (Volkens et al., 2017)3 consists in textual

3 https://manifesto-project.wzb.eu/, accessed Jan. 2025.
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parties policy positions from different countries. Some of them are
manually annotated with topics along the text, which is a premium re-
source to test methods in a topic clustering or classification task. Topical
annotations are divided between 7 super-topics and several sub-topics.
We chose here to use only super-topic classes, as the number of groups
seems reasonable for our algorithm. For coherence in language and
culture, we extracted the annotated documents from US parties, which
corresponds to 9 documents: the manifestos from the Democratic Party
from 1992, 2004, 2012, 2016, and 2020, and the Republican Party from
2004, 2008, 2012, and 2016.
The WIKI50 dataset, introduced in (Koshorek et al., 2018), consists in
a set of 50 randomly sampled test documents from the largest WIKI-
727K. It consists in 50 English Wikipedia articles and their segmenta-
tion corresponding to their table of content.
The CITIES and ELEMENTS datasets, introduced in Chen et al. (2009),
are two datasets which are also extracted from English Wikipedia. The
first consists in 100 articles about large cities, and the second in 119
articles about chemical elements in the periodic table.
Finally, the CLINICAL dataset, introduced in Eisenstein & Barzilay
(2008), consists in 226 chapters extracted from the Clinical Textbook,
which are mainly used in the topic segmentation task because the differ-
ent sections are not labeled.
All these datasets are well designed for text segmentation, but, with the
exception of the MANIFESTO dataset, they are less suitable for topic
clustering, especially if information is not shared across documents. As
a matter of fact, each document extracted from Wikipedia (WIKI50,
CITIES, ELEMENTS), when looked at individually, has a unique label
for each segment. This means that, when a method of clustering is
applied on a unique file, these documents operate like the CLINICAL

dataset with unlabeled segments: the number of groups found in a
document is always equal to the number of segments. This situation is
not ideal, as a topic should be a recurring subject, appearing at multiple
places in a document, as found in the MANIFESTO dataset. Neverthe-
less, because of the lack of other real datasets and because these corpora
are largely used to evaluate methods in literature, we will use them here
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for comparison purposes.
All datasets are preprocessed the same way: case is lowered, stop-
words, numbers and punctuation marks are removed, while information
about where each sentence ends is kept in order to apply the method on
sentences.

3.3 Methodology
For both tasks, we used two versions of our algorithm, which
work on two different textual objects: we named SpatialWord our
method when applied on word-tokens, and SpatialSent when used on
sentences. Relative weight f is defined as uniform for word-tokens, and
proportional to the number of words for sentences. For each document,
the real number of groups is given to our method. Both methods are
tried with a semi-supervised version with 5% and 10% random labeling
rate.
For word-tokens, we wanted to use semantic similarities which
do not use their local context, as we wanted to rely solely on the
exchange matrix to express spatial dependencies. This excludes
word-token embeddings, e.g. based on BERT (Devlin et al., 2019),
because of their use of the context of a token to build its vector. We
selected 3 kinds of semantic similarities, computed as the cosine
between word-type vectors extracted from pre-trained embeddings:
w2v, which is a 300d Word2Vec Skip-Gram model trained on the
English Wikipedia 2018, as found in Wikipedia2Vec (Yamada et al.,
2020)4; glv, which is 300d GloVe model trained on Common Crawl
(Pennington et al., 2014)5; and ftx, which is a 300d FastText model
trained on Wikipedia 2017 (Bojanowski et al., 2017).6 The choice of
the similarity between those three will be a hyperparameter to tune.
For SpatialSent, semantic similarities are computed with the cosine
between vectors obtained from a pre-trained sentence embedding
model, named all-mpnet-base-v2 (Reimers & Gurevych, 2019), which
is based on BERT (Devlin et al., 2019). All similarities are transformed
into dissimilarities with dij = maxkl skl − sij . For both methods, we

4 https://wikipedia2vec.github.io/wikipedia2vec/, accessed Jan. 2025.
5 https://nlp.stanford.edu/data/glove.42B.300d.zip, accessed Jan. 2025.
6 https://fasttext.cc/docs/en/english-vectors.html, accessed Jan. 2025.
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used the uniform exchange matrix, as it seems to consistently give
better results on these tasks.
For each dataset, each task, and each method, the tuning of hyperpa-
rameters is done with a grid search on one file of the dataset. This
file is selected to be the closest to the typical values found in the
dataset in terms of number of tokens, number of sentences, and average
topical sequence length. Hyperparameters consist in the choice of
r ∈ {5, 10, 15}, α ∈ {1, 2, 5, 10, 30}, β ∈ {5, 10, 50, 100, 200}, and
κ ∈ {0, 0.25, 0.5, 0.75, 1}. Moreover, for the SpatialWord method, the
choice between {w2v, glv, ftx} for the semantic dissimilarity is also
tuned.
For the topic clustering task, our methods are compared to Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) and Non-negative Matrix
Factorization (NMF) (Arora et al., 2012). However, these methods
do not give good results if used as intended, i.e. when using the
whole corpus to extract topics. A more efficient way to use them in
this task is to split one document into small chunks, and to consider
these chunks as different parts containing a mixture of topics. The
length of these chunks, which can be selected between fractions
{ 1
20 ,

2
20 ,

3
20 ,

4
20 ,

5
20 ,

6
20 ,

7
20 ,

8
20 ,

9
20 ,

10
20} of document length, is tuned on

the same documents as our methods. Using this scheme for these
methods allows us to assign different topics to different occurrences of
the same word-type, as the probability for a token w to be in group g
is P(T = g|W = w) ∼ P(W = w|T = g)P(T = g), with a different
P(T = g) for each chunk.
For the text segmentation task, resulting Pk scores for our methods are
compared to a random baseline, and scores are reported from BayesSeg
(Eisenstein & Barzilay, 2008), GraphSeg (Glavaš et al., 2016), TextSeg
(Koshorek et al., 2018), and Sector (Arnold et al., 2019) methods. Note
that the last two methods, TextSeg and Sector, are supervised methods
and are expected to show better results. Except for Sector, a text
segmentation and topic classification method, none of these methods
give class labels for resulting segments.
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3.4 Results

3.4.1 Topic clustering results
Results for the topic clustering task are shown into table 1. The Spa-
tialSent consistently performs better than other methods, while Spatial-
Word method is better than LDA but less good than NMF. Surprisingly,
when using some labels, the SpatialWord now outperforms SpatialSent
and gives very strong results. We observe that all method give a low
NMI on the MANIFESTO dataset, which is the only annotated dataset
permitting a serious validation of the topic clustering task. However,
when looking at words defining clusters on a file, even with the Spa-
tialWord method as shown in table 2, we can clearly identify pertinent
topics using P(T = g|W = w) or P(W = w|T = g) (the latter gives
the general tone of each topic, which is quite redundant in this case).

MANIFESTO WIKI50 CITIES ELEMENTS CLINICAL

LDA 12.4 38.0 56.7 48.8 35.0
NMF 19.9 54.7 68.4 61.6 47.6
SpatialWord 14.8 50.2 56.9 45.0 29.0
SpatialSent 26.9 66.6 81.5 75.9 58.1

SpatialWord, 5% 45.9 72.0 87.2 69.4 67.4
SpatialSent, 5% 30.0 61.9 77.9 76.7 60.4

SpatialWord, 10% 51.7 76.2 91.6 77.0 74.5
SpatialSent, 10% 30.8 66.2 80.2 75.2 68.3

TABLE 1 – Mean NMI results for method × dataset. Higher is better, best results
(without considering semi-supervised version of methods) are in boldface.

3.4.2 Text segmentation results
Text segmentation results are found in table 3. Globally, the TextSeg
seems to perform better than other methods, with the exception of
GraphSeg for the MANIFESTO dataset (in fact, TextSeg was not tested on
this dataset) and of SpatialSent on the ELEMENTS dataset. If we strictly
look at unsupervised methods, we can see that SpatialSent generally
gives the best results, while SpatialWord is in the average. The only
other method to also give group labels, Sector, gives generally better
results than our methods, but these results must be put in perspective
because, unlike our methods, it is supervised. When looking at semi-
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Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

Top 5 word-types regarding P(T = g|W = w)

qadhafi america cleaner love withstand bp uninsured
muammar colombia generating tell adversary tsunami counseling
syrian indonesia electricity telling reinforce fissile funds
prodemocracy malaysia cheap splipped involve gm funded
iraqi chile optimizing story reveal nasa refinancing

Top 5 word-types regarding P(W = w|T = g)

president trade energy president president president health
obama president jobs middle continue obama president
states american education back security nuclear care
support economic tax america obama states democrats
rights global businesses work nuclear american support

TABLE 2 – Word-types defining clusters on the file Democratic 2012 from the MANI-
FESTO dataset, as found with the SpatialWord method (NMI = 11.2).

supervised results, the SpatialWord method quickly outperforms all
methods, while SpatialSent remains about the same, as already seen in
the topic clustering results.

MANIFESTO WIKI50 CITIES ELEMENTS CLINICAL

Random baseline 60.4 61 59 58.5 66.9
GraphSeg 28.1 63.6 40 49.1 -
BayesSeg - 49.2 36.2 35.6 57.8
TextSeg - 18.2 19.7 41.6 30.8
Sector - 28.6 21.4 39.2 35.6
SpatialWord 39.6 50.2 49.9 45.4 33
SpatialSent 38.8 43.7 33.9 28.4 40.2

SpatialWord, 5% 41.6 33.8 13.2 23.4 27.2
SpatialSent, 5% 38.4 40.2 32.8 30.2 37

SpatialWord, 10% 31.8 24 5.6 10.5 25.5
SpatialSent, 10% 37.3 41 32.1 28.3 30.9

TABLE 3 – Mean Pk results for method× dataset. Lower is better, best results (without
considering semi-supervised version of methods) are in boldface.

3.4.3 Method scaling
The method complexity is O(n2m) and does not scale well on large
files. However, as seen in section 2.1.5, it is possible to divide a text
file into p overlapping blocks of nb tokens, and proceed sequentially on
blocks while transferring predicted labels from the previous block as
fixed labels on the next block. We tested this process with SpatialWord
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on the largest file in our datasets, i.e. the Republican 2020 from the
MANIFESTO dataset, which has 25’870 tokens (without stopwords).
When using block sizes of nb, we define each block to have nb/2
overlapping tokens with its predecessor, giving a theoretical complexity
of O(n2

bnm). Results are found in figure 2. We see that the computing
time is reduced, as well as performances in clustering, as shown by
NMI. However, this loss in performances becomes acceptable for largest
block sizes. By contrast, Pk seems less affected by the computation on
blocks and gives comparable results, even with low block sizes. This
block method has not been tested on SpatialSent, as the number of
sentences is much lower than the number of words and the computing
time is reasonable for every document in our datasets.

4 Conclusion

We have presented a very general, classical, formalism which is able to
fuzzily cluster textual objects by taking into account a balance between
object similarity and position in text. We proposed two methods de-
rived from this formalism: SpatialWord, which applies on word-tokens,
and SpatialSent, operating on sentences. These methods showed good
performances for automatically retrieving topics, associated vocabulary,
as well as textual segments where these topics appear. Hence, these
methods could be used as a new distant reading tool in order to extract
topical information on a single document, without any previous train-
ing. When compared to state-of-the-art methods on two different tasks,
topic clustering and text segmentation, the proposed methods give good
results considering they perform both tasks at the same time, in an
unsupervised way, and without sharing information across documents.
The number of hyperparameters, while permitting these methods to
be highly flexible, can however becomes problematic if these methods
are applied without knowing ground truth, as no self-validation indices
(such as perplexity for topic modeling or inter-group variance for k-
means) have been developed for the moment. However, experiments on
these datasets on both tasks have already shown some regularities for
the studied corpora, and we recommend using ftx semantic similarities
while setting r = 15, α = 10, β = 100, κ = 0.25 for SpatialWord
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FIGURE 2 – Computing time (left), NMI (middle), and Pk (right) vs the number of
tokens in blocks when run on the Republican 2020 file from the MANIFESTO dataset
(with 95% CI). Horizontal lines correspond to results when the algorithm is run on the
whole file. Results are computed on a single thread, 2.6GHz, i7-9750H CPU.

method, and r = 5, α = 10, β = 100, κ = 0.75 for SpatialSent in
order to obtain decent results on both tasks at once. Experiments also
showed that SpatialSent performs consistently better than SpatialWord
when used without information, which seems obvious as manually an-
notated segments are generally delimited by punctuation. Surprisingly,
SpatialWord outperforms greatly SpatialSent when having access to
some labeled words. While the situation of having direct access to token
labels seems unrealistic in real world situations, this could still have
applications: a user could provide short lists of typical words defining
expected topics (e.g. 10 words for every topic), label corresponding

90 Cahiers du CLSL, n° 69, 2025



tokens, and find a pertinent segmentation for his query, as well as the
rest of the associated vocabulary. The only remaining difficulty with
these methods is a very large computing time. We suggested a way to
alleviate this problem, if someone desires to apply them to very large
files, but we showed that the performances in the topic segmentation
task then decreased. Nevertheless, this should not be problematic if this
method is used as an exploratory tool on relatively small corpora, which
is the usual setting for a digital humanities researcher.
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A Appendices

A.1 Spatial clustering/semi-supervised classification algorithm

Input: dissimilarity matrix D, exchange matrix E, initial membership
matrix Z0, the set of tagged objects T (can be empty in case of
clustering), hyperparameters α, β, κ, learning parameter λ ∈ (0, 1],
stopping threshold ϵ.

Output: The fuzzy membership matrix of objects Z

1 f ← Een ; // Object weights. en is the size n vector of ones.

2 Z← Z0 ; // Initialize membership matrix.

3 F ← 109, Fold ← 1010 ; // Initialize free energy.

4 while |F − F old| > ϵ do
5 Zold ← Z ; // Save old membership matrix.

6 Fold ← F ; // Save old free energy value.

7 ρ← Z⊤f ; // Group weights.

8 F← (f(en ⊘ ρ)⊤)⊙ Z ; // Within-group distibutions.7

9 δ ← diag(F⊤DF) ; // Group inertias.8

10 c← (ρ2 − Z⊤EZ)⊘ ρκ ; // Generalized cut values for groups.9

11 H← β(DF− 1
2
enδ) + en[αρ

−κ ⊙ (ρ−EZ⊘ fe⊤
m)− ακ

2
c⊘ ρ]⊤ ;

// Matrix H.

12 Z← (enρ
⊤)⊙Exp(−H) ; // Unnormalized membership matrix.10

13 Z← Z⊘ Zeme⊤
n ; // Normalize the membership matrix.

14 Z = λZ+ (1− λ)Zold ; // Move it according to the learning rate.
15 if T ≠ ∅ then
16 zig ← z0ig, ∀i ∈ T , ∀g. ; // Reset tagged objects (if any) to initial values.
17 end
18 F ← βf⊤Zδ+ α

2
e⊤
mc+e⊤

n (F⊙Log(F⊘ fe⊤
m))ρ ; // Free energy update.

19 end
20 Return(Z)

7 ⊘ and ⊙ are componentwise (Hadamard) division and multiplication respectively.
8 diag() gives the vector with the diagonal of the matrix.
9 Powers of vectors are componentwise.

10 Exp() and Log() (on line 18) are componentwise.
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A.2 Computations of exchange matrices
Uniform exchange matrix : The uniform exchange matrix EU(r)

can be obtained with the Metropolis-Hastings algorithm from an ad-
jacency matrix Ar = (arij) = (1(|i− j| ≤ r])), given the stationary
distribution f . It reads

EU(r) = Diag(f)−LB where B = (bij) =

(
min

(
fia

r
ij

ari•
,
fja

r
ji

arj•

))

where Diag(f) is the diagonal matrix containing f and (LB)ij :=
δijbi• − bij the Laplacian of B.

Diffusive exchange matrix : Here, we use a diffusive process from
the adjacency matrix A = (aij) = (1(|i− j| = 1])). It gives

ED(t) = Diag(f)1/2Exp(−tΨ)Diag(f)1/2

where the Exp() is the matrix exponentiation and

Ψ := Diag(f)−1/2 LA

tr(LA)
Diag(f)−1/2

with (LA)ij = δijai• − aij the Laplacian of A.
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