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Abstract

This paper investigates a theoretical extension of the entropy-
regularized least-cost problem on a graph from a bag-of-paths perspec-
tive. This extension constrains the a priori probability distribution on
the length of the paths in order to follow a Poisson distribution. There-
fore, this framework allows us to weigh the global impact of path
lengths, depending on the structure of the graph, which proves useful
in node classification and clustering problems. Accordingly, a novel
distance measure between nodes of the graph can be defined from
the probability of drawing an i-j path derived from the new bag-of-
paths model. Experiments on supervised classification problems show
that the proposed distance is competitive with other state-of-the-art
distances and kernels on a graph.

1 Introduction

1.1 General introduction

This work aims at extending the randomized shortest paths (RSP) and
bag-of-paths (BoP) models, which were introduced and refined in a
series of papers (Bavaud & Guex, 2012; Kivimäki et al., 2014; Saerens
et al., 2009; Yen et al., 2008), and were initially inspired by trans-
portation science models (Akamatsu, 1996; Dial, 1971). Basically, the
RSP model adds a relative entropy regularization term to the classical
least-cost path problem between two nodes, i (source), j (target), of a
graph, with the consequence that each i-j path is assigned a probability
mass of following this path. Lower-cost paths are assigned a higher
probability of being followed, although large-cost paths are less likely
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to be chosen. This problem can also be viewed from the point of view of
a maximum (relative) entropy problem with a fixed expected cost con-
straint (Saerens et al., 2009). The BoP model (Francoisse et al., 2017;
Mantrach et al., 2010) generalizes the RSP model by extending the set
of i-j paths to all possible paths in the graph (for all i-j pairs). As in
Courtain & Saerens (2022), the present paper investigates a weighing of
the i-j paths by the probability of choosing a given path length ℓ in the
BoP framework. Here, the a priori path length distribution is assumed
to follow a Poisson distribution, but other distributions could be used
as well, depending on the application. This is interesting for at least
two reasons. First, selecting paths having a certain length range allows
us to quickly cover the entire network without relying on excessively
long paths. For example, Backstrom et al. (2012), when analyzing
a huge, popular social network, observed that the average length be-
tween two nodes was 4.74, corresponding to only 3.74 intermediaries
or “degrees of separation”. Second, the underlying intuition is that the
Poisson distribution parameter could be seen as a resolution, scaling
parameter monitoring the region of influence of each node (in terms
of length from the starting node), which could prove useful in node
clustering, community detection, or node label classification. However,
the model introduced in Courtain & Saerens (2022) was derived in an
ad hoc manner; therefore, it is reformulated in a more principled way
in this paper, and applied in the experimental section to supervised
classification problems.

1.2 Background and notation
Let us consider a weighted, strongly connected, directed graph G con-
taining n nodes ∈ V (the set of nodes), and non-negative costs cij
together with affinities aij (adjacency matrix) associated to (directed)
edges.

1.2.1 The bag-of-paths model
The BoP model is based on the probability πij that a path ℘ drawn
at random from a bag of paths starts at node i and ends at node j
(Francoisse et al., 2017; Lebichot et al., 2014; Mantrach et al., 2010).
This bag of paths is assumed to be a set containing all paths of G, of
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arbitrary length. As usual, a path or walk ℘ is a sequence of transitions
to adjacent nodes on G starting at a source node s(℘) = i and finishing
at a target node t(℘) = j. Moreover, the length of a path ℓ(℘) is the
number of hops required to follow that path. Each path is weighted
according to its quality, that is, its total cost, defined as the sum of costs
ckl over all edges along the path ℘, c̃(℘). Costs associated with missing
edges are supposed to be infinite, preventing these edges to be traversed.

Following Francoisse et al. (2017), two other notions need to be
introduced to define the probability of drawing a path from the bag of
paths. The first is the set of paths between a source node i and a target
node j, including cycles, denoted by Pij = {℘ij}. The set Pij usually
contains an infinite, but countable, number of paths ℘ij . The second is
the set of all paths through the graph P =

⋃n
i,j=1 Pij .

In this context, the probability of drawing a path ℘ ∈ P from the
bag of paths, which is a probability distribution on the set P , can be
defined as the probability distribution P(·) minimizing the total expected
cost E[c̃(℘)], favoring the exploitation, among all the distributions
having a fixed relative entropy, or Kullback-Leibler divergence, J0. The
relative entropy is computed with respect to a reference distribution,
here the natural random walk of the graph defining a Markov chain with
transition probabilities pRW

kl = akl/
∑n

l′=1 akl′ , allowing some random
exploration.

The choice of this distribution naturally defines a probability dis-
tribution on the set of paths such that high-cost paths occur with a
low probability while low-cost paths occur with a high probability
(Francoisse et al., 2017). More precisely, we are seeking for path proba-
bilities, P(℘), ℘ ∈ P , minimizing the total expected cost subject to a
constant relative entropy constraint,

{P(℘)}
minimize

∑

℘∈P
P(℘)c̃(℘)

subject to
∑

℘∈P P(℘) log
(
P(℘)/P̃(℘)

)
= J0

∑
℘∈P P(℘) = 1

(1)

where J0 > 0 is provided a priori by the user, according to the desired
degree of randomness and P̃(℘) represents the probability of following
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the path ℘ (product of probabilities along the path) when walking ac-
cording to the natural random walk transition probabilities pRW

kl gathered
in transition matrix PRW, and properly normalized (Francoisse et al.,
2017).

1.2.2 The path-based probability distribution
Solving the problem presented in Eq. 1 leads to a Gibbs-Boltzmann
probability distribution (see Francoisse et al., 2017, for details),

P(℘) =
P̃(℘) exp[−θc̃(℘)]∑

℘′∈P
P̃(℘′) exp[−θc̃(℘′)]

(2)

where the parameter θ = 1/T is the inverse temperature directly related
to the relative entropy J0. Thus, as expected, low-cost paths are favored
due to their high probability of being sampled. The inverse temperature
parameter θ allows us to monitor the balance between exploration and
exploitation. Notice that, in the sequel, it will be more convenient to
provide the value of the parameter θ, with θ > 0, instead of the relative
entropy J0.

Finally, the bag-of-paths probability of drawing a path starting in
node s(℘) = i and ending in some other node t(℘) = j can now be
defined as

P
(
s(℘) = i, t(℘) = j

)
=

∑

℘∈Pij

P̃(℘) exp[−θc̃(℘)]

∑

℘′∈P
P̃(℘′) exp[−θc̃(℘′)]

(3)

with Pij defining the set of all path starting at node i and ending at
node j. As shown in Francoisse et al. (2017), this quantity can easily
be computed in analytic closed-form, beginning with the introduction
of a new transient (sub-stochastic) matrix W defined as

W ≜ PRW ◦ exp[−θC] (4)

where C = (ckl) is the cost matrix, PRW is the natural transition proba-
bility matrix, ◦ is the elementwise (Hadamard) matrix product and the
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exponential function is taken elementwise. Therefore, the element wkl

of W is wkl = pRW
kl exp[−θckl].

Thanks to this matrix W, it turns out (Francoisse et al., 2017) that
the sum in the numerator of Eq. 3 can be rewritten as

∑

℘∈Pij

P̃(℘) exp[−θc̃(℘)] =
∞∑

τ=0

[
Wτ

]
ij
=
[
(I−W)−1

]
ij
= zij (5)

with I being the identity matrix and where, by convention, zero-length
paths are allowed and associated with a unit value and a zero cost. Thus,
computing the power series of W leads to the definition of the matrix
Z = (zkl) ≜ (I−W)−1 called, by analogy to Markov chains (Kemeny
et al., 1976), the fundamental matrix. Interestingly, it can be shown that
elements zij can be interpreted as the expected number of times that a
“killed” random walker with a transient matrix W starting from node i
visits node j before stopping his walk (Francoisse et al., 2017). In the
same way, the denominator of Eq. 3 can be computed by

n∑

i,j=1

∑

℘∈Pij

P̃(℘) exp[−θc̃(℘)] ≜ Z =

n∑

i,j=1

zij (6)

with Z being the partition function of the bag-of-paths system.

1.2.3 The probability of drawing a path connecting two nodes
Finally, the bag-of-paths probability of drawing a path ℘ starting in
node s(℘) = i and ending at some other node t(℘) = j (Francoisse
et al., 2017), presented in Eq. 3, is

πij = P
(
s(℘) = i, t(℘) = j

)
=

zij
Z =

zij∑n
i,j=1 zij

(7)

where Π = (πij) is the bag-of-paths probability matrix containing the
probabilities for each source-target pair of nodes. Notice that this matrix
verifies

∑n
i,j=1 πij = 1 and is not symmetric in general. Therefore, in

the case of an undirected graph, a variant consists of computing the
probability of drawing a path i ⇝ j or j ⇝ i, i.e. regardless of the
direction of the link. The result is a symmetric matrix, Πsym = Π+ΠT,
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where only the upper (or lower, since the matrix is symmetric) triangular
part is relevant. The interpretation of the bag-of-paths probability matrix
depends on the type of path used (regular or hitting; see Kivimäki et al.,
2014 and Francoisse et al., 2017 for details); in this work, we only
develop the formalism for regular paths; the case of hitting paths is left
for future work.

2 Bag-of-paths with Poisson-distributed path lengths

In this section, we extend the bag-of-paths model by constraining the
probability of sampling a path to follow a Poisson probability distribu-
tion on its length. Moreover, this contribution also extends the content
of a previous paper (Courtain & Saerens, 2022) by avoiding the inde-
pendence between path likelihood and path length. First, we introduce
the BoP model constraining the probability of sampling a path to be
Poisson-distributed in Subsection 2.1. Then, the joint probability of
drawing a path starting in node i and ending in j is derived in Subsec-
tion 2.2. Finally, a distance measure between nodes is derived from
these joint probabilities in Subsection 2.3.

2.1 BoP model with Poisson-distributed path lengths

Similarly to the standard BoP model introduced in the previous section,
we minimize the free energy objective function (a reformulation of our
original problem in Eq. 1), while now introducing constraints on path
lengths. The idea is to constrain the probability of sampling a path ℘
of length ℓ(℘) = τ to follow a Poisson probability distribution f(τ, λ)
with parameter λ.1 This additional constraint allows us to tune the
expected path length at which the relevant information can be found, as
a hyper-parameter. The problem in Eq. 1 can therefore be reformulated

1 Recall the form of the Poisson distribution, f(τ, λ) = λτ exp(−λ)/τ ! (Papoulis &
Pillai, 2002). Note that other probability distributions could also be used, depending
on the problem.
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as

{P(℘)}
minimize

n∑

i,j=1

∞∑

τ=0

∑

℘∈Pij(τ)

(
P(℘)c̃(℘) + T P(℘) log

(
P(℘)

P̃(℘)

))

subject to
n∑

i,j=1

∑
℘∈Pij(τ)

P(℘) = f(τ, λ) for each length τ

(8)
where, as before, T = 1/θ, c̃(℘) is the total cost of path ℘ when visiting
the nodes in the sequential order and P̃(℘) is the probability of the path
℘ according to the natural random walk. Furthermore, Pij(τ) is the set
of paths connecting node i to node j whose length is exactly equal to τ .

Note that in this formulation of the problem, we do not explicitly
constrain the probability distribution P(℘) to sum to 1. Indeed, since
the quantity f(τ, λ) is a Poisson probability mass, this implies that the
probability distribution sums to 1,

∑n
i,j=1

∑∞
τ=0

∑
℘∈Pij(τ)

P(℘) =∑∞
τ=0 f(τ, λ) = 1.
The problem presented in Eq. 8 can be solved by optimizing the

following Lagrange function integrating equality constraints

L (P(℘),µ) =
n∑

i,j=1

∞∑

τ=0

∑

℘∈Pij(τ)

(
P(℘)c̃(℘) + T P(℘) log

(
P(℘)

P̃(℘)

))

+

∞∑

τ=0

µτ

(
f(τ, λ)−

n∑

i,j=1

∑

℘∈Pij(τ)

P(℘)

)
(9)

over the set of path probabilities P(℘) with ℘ ∈ P = ∪n
i,j=1∪∞

τ=0Pij(τ)
(the bag of all possible paths). Minimizing Eq. 9 can be done by setting
its partial derivative to the i-j path probability P(℘) of length τ to zero,
which gives

∂L (P(℘),µ)

∂P(℘)
= c̃(℘)+T log

(
P(℘)

P̃(℘)

)
+T −µτ = 0 for ℘ ∈ Pij(τ)

(10)
Isolating the logarithm and defining θ = 1/T further provide

P(℘) = P̃(℘) exp[−θc̃(℘)] exp[θµτ − 1] (11)
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We can now rewrite the constraint of Eq. 8, expressing that the proba-
bility of sampling a path must follow a Poisson probability distribution,
from Eq. 11 as

f(τ, λ) =
∑

℘∈P(τ)

P̃(℘) exp[−θc̃(℘)] exp[θµτ − 1] (12)

which means that

exp[θµτ − 1] =
f(τ, λ)∑

℘′∈P(τ) P̃(℘
′) exp[−θc̃(℘′)]

(13)

Finally, the i-j path probabilities P(℘) of length τ can be obtained
from Eqs. 11 and 13 as

P(℘) =
f(τ, λ)P̃(℘) exp[−θc̃(℘)]∑
℘′∈P(τ) P̃(℘

′) exp[−θc̃(℘′)]
= f(τ, λ)

P̃(℘) exp[−θc̃(℘)]

Z(τ)

(14)
where Z(τ) is the partition function associated with the set of all paths
with length ℓ(℘) = τ , that is, P(τ).

2.2 Computing the joint probability of drawing a path starting in
i and ending in j

As for the standard BoP (Eq. 7), we can now define the probability of
drawing a path ℘ starting in node s(℘) = i and ending in some other
node t(℘) = j, considering the set of all paths connecting i to j in
exactly τ steps as Pij(τ). From Eq. 14, we find

πij(λ) = P
(
s(℘) = i, t(℘) = j

)
=

∞∑

τ=0

∑

℘∈Pij(τ)

P(℘)

=

∞∑

τ=0

∑

℘∈Pij(τ)

f(τ, λ)P̃(℘) exp[−θc̃(℘)]∑n
i′,j′=1

∑
℘′∈Pi′j′ (τ)

P̃(℘′) exp[−θc̃(℘′)]

=

∞∑

τ=0

f(τ, λ)

∑
℘∈Pij(τ)

P̃(℘) exp[−θc̃(℘)]
∑n

i′,j′=1

∑
℘′∈Pi′j′ (τ)

P̃(℘′) exp[−θc̃(℘′)]
(15)
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Furthermore, we can define, in the same way as in the standard BoP
model (see Eqs. 5-6 for a given τ , or Francoisse et al., 2017), the
element (i, j) of the matrix Z(τ) as

zij(τ) ≜
∑

℘∈Pij(τ)

P̃(℘) exp[−θc̃(℘)]

w(℘)

=
∑

℘∈Pij(τ)

w(℘) = [Wτ ]ij

(16)
Finally, from Eq. 16, the probability of drawing a path starting in node
s(℘) = i and ending in some other node t(℘) = j, presented in Eq. 15,
becomes

πij(λ) = P
(
s(℘) = i, t(℘) = j

)
=

∞∑

τ=0

f(τ, λ)
zij(τ)

z••(τ)
(17)

where • means summation on the corresponding index. We can im-
mediately verify that

∑n
i,j=1 πij(λ) =

∑∞
τ=0 f(τ, λ) = 1, as should

be.
To obtain the probability πij(τ, λ) for an increasing length τ in matrix

form, we now derive a recurrence expression to compute each term of
the series presented in Eq. 17 in turn. To do so, from Eq. 16, we have
Z(τ) = Wτ so that we need to iterate the two following expressions
until convergence,




Z(τ + 1) = Z(τ)W

Π(τ + 1, λ) = Π(τ, λ) + f(τ + 1, λ)
Z(τ + 1)

z••(τ + 1)

(18)

In this equation, Π(τ, λ) contains the elements πij of the truncated
series (Eq. 17) up to length τ . This update of Z(τ) should usually
converge quickly because spatial interactions in real-world networks are
expected to be mainly local, which means that only low values of λ are
relevant. In that situation, f(τ, λ) quickly drops to zero, which implies
that the contributions to Π(τ, λ) also tend to zero (each contribution
in the series of Eq. 17 is ≤ f(τ, λ)). Furthermore, when τ = 0, we
initialize the matrices Z(τ) and Π(τ, λ) by




Z(0) = I

Π(0, λ) = f(0, λ)
I

n

(19)
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with n being the number of nodes and I the identity matrix. This
means that, for zero-length paths, the source node and the target node
must be the same, and thus, πij(0, λ) = f(0, λ)δij/n, where δij is the
Kronecker delta.

The time complexity of the matrix Π(τ, λ) computation is dominated
by the matrix product performed at each iteration. Therefore, it is of
order k · O(n3) where n is the number of nodes and k is the number of
required iterations. However, complexity could be lower when working
with sparse matrices.

2.3 A derived distance measure between nodes

We now derive a distance measure between the nodes following the
same procedure as in Courtain & Saerens (2022) and Francoisse et al.
(2017). More specifically, we take minus the (elementwise) logarithm
of the probability matrix Π(τ, λ) obtained after convergence of Eq. 18.
The resulting distance matrix between nodes, called the directed Poisson
surprisal distance, is defined as ∆DPSURP = − logΠ(τ, λ) with the log
being the natural elementwise logarithm. It computes the “surprisal”
of observing a path starting in i and ending in j, and is an extension
of the surprisal distance introduced in Francoisse et al. (2017). The
Poisson surprisal distance (PSurp) measure is the symmetrized quantity,
∆PSURP = 1

2

(
∆DPSURP +(∆DPSURP)T

)
, where the diagonal elements are

then set to zero by subtracting Diag(∆PSURP) to ∆PSURP. It measures
both proximity (low cost) and reachability (high connectivity) of the
nodes of G; in other words, it quantifies the ease of accessibility between
pairs of nodes.

3 Experiments

In this section, we compare the performance of the Poisson surprisal
distance introduced in the previous section with other state-of-the-art
methods regarding classification accuracy on a graph-based kernel semi-
supervised classification task. It is important to emphasize that our
description follows the framework established in Courtain (2022) and
Courtain & Saerens (2022), and that the compared methods, experimen-
tal setup, and datasets analyzed are similar to those used in that study.
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Therefore, we will only focus on the new points in our description and
refer to those papers for more details.

3.1 Investigated state-of-the-art methods

As part of our experimental design, we selected three dissimilarity mea-
sures and seven kernel matrices as baseline methods to evaluate the per-
formance of the introduced distance. These methods achieved the high-
est performance in their respective categories in the semi-supervised
classification experiment described in Courtain (2022). Furthermore,
the majority of these methods have already demonstrated strong perfor-
mance in prior semi-supervised tasks (Courtain et al., 2023; Courtain &
Saerens, 2022; Francoisse et al., 2017; Ivashkin & Chebotarev, 2022;
Leleux et al., 2021), as well as in unsupervised tasks (Courtain et al.,
2021; Ivashkin & Chebotarev, 2017; Sommer et al., 2017; Yen et al.,
2009).

A summary of all the investigated methods and their acronyms is
provided in table 1; notice that our proposed method is called PSurp.
We refer the interested reader to subsection 7.1 and table 7.1 in Cour-
tain, 2022 for an in-depth description of each method and the parameter
values used. For our proposed method, we employed the same pa-
rameters as PWSurp (introduced in Courtain & Saerens, 2022), specif-
ically θ = {10−6, 10−5, . . . , 10} and λ = {1, 2, 3, 5, 10}. Further-
more, for PWSurp, we employed both uniform priors (PWSurpUni)
and L1-normalized degree priors (PWSurpDegree) to enable direct
comparison with PSurp, even though previous studies have shown
that L1-normalized priors yield superior performance (Courtain, 2022;
Courtain & Saerens, 2022).

3.2 Experimental design

To evaluate node classification performance across the 14 network
datasets, we transform all dissimilarity and similarity measures into
kernel matrices, K, by removing negative eigenvalues and feeding
these matrices into a kernel SVM2 with various margin parameter val-
ues c = {10−2, 10−1, 1, 10, 100}. As noted earlier, the same dataset

2 The LIBSVM library (Chang & Lin, 2011) was used with options ‘-s 0’ and ‘-t 4’.
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Method Acronym
Poisson surprisal distance (this paper) PSurp
Poisson-weighted surprisal distance with priors (by Uniform and Degree

distribution) (Courtain & Saerens, 2022) PWSurp
Margin-constrained bag-of-hitting-paths surprisal distance (Guex et al., 2019) cBoPH
Correlation kernel based on the number of occurrences of nodes on regular

paths (Guex et al., 2021) nCor
Correlation kernel based on the number of occurrences of nodes on hitting

paths (Guex et al., 2021) nCorH
Logarithmic forest distance (Chebotarev, 2011) LF
Modified regularized Laplacian kernel (Ito et al., 2005) MRL
Sigmoid commute time similarity (Yen et al., 2007, 2009) SCT
Sigmoid corrected commute time similarity (based on von Luxburg et al.,

2010, Yen et al., 2007, 2009) SCCT
Logarithmic communicability similarity (Ivashkin & Chebotarev, 2017) LogCom
Random walk with restart similarity (Tong et al., 2006) RWWR

TABLE 1 – The different methods for computing similarities and dissimilarities between
nodes investigated in our experiments, with their acronym.

collection as in Courtain (2022) is employed; detailed descriptions can
be found in table 7.3 of that work. This collection comprises nine sub-
sets from the 20 Newsgroup datasets (Lichman, 2013; Yen et al., 2009),
four WebKB datasets (Macskassy & Provost, 2007), and the IMDB
dataset (Macskassy & Provost, 2007). All networks are undirected,
represented by an adjacency matrix A, with transition costs cij defined
as the inverse of affinity, 1/aij , akin to electrical networks (Francoisse
et al., 2017). Each node is labeled with a class for classification purposes
based on the structure of the network.

For dissimilarity measures, we examine three transformations to a
kernel matrix: classical multidimensional scaling (MDS)3 (Borg &
Groenen, 1997), Gaussian transformation (Gauss) (Schölkopf & Smola,
2002), and centered Gaussian transformation (GaussCenter).4 To main-
tain clarity, we present only the best kernel transformation results for
each method, as determined by Nemenyi tests (Demšar, 2006) (see
Tab. 2 for details).

3 Kernels generated through this transformation are inherently centered.
4 In this transformation, the kernel K is centered as K ← HKH, where H =

I− eeT/n is the centering matrix, e is a vector of ones, I is the identity matrix,
and n is the number of nodes.
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To minimize variability in the results, we conduct 10 repetitions of
a 5 × 5 nested cross-validation procedure, with different labeled and
unlabeled node splits in each run. In the external 5-fold cross-validation,
20% of the node labels are used for training, while the remaining 80%
are hidden for testing. During each internal 5-fold cross-validation,
parameters are tuned on the external training fold using 80% of the
labeled nodes. External and internal folds are kept consistent across
all methods in a given run to maintain comparability. The final results,
presented in table 2, are the average of 50 accuracy scores from the
external cross-validation folds.

3.3 Results and discussion
The results of the semi-supervised classification experiments are pre-
sented in table 2. To enhance clarity, the highest accuracy for each
dataset is indicated in bold. As shown in table 2, LF outperforms all
others on the WebKB datasets, while the nCor method achieves the
best performance on the IMDB dataset. The results for the Newsgroups
datasets are more varied: PWSurpDegree and SCCT each deliver the
highest accuracy on three of these datasets, whereas PSurp, PWSurpUni,
and cBoPH each attain the highest accuracy on one dataset. Overall,
these results suggest that the best-performing method varies depending
on the dataset.

To further investigate the results, we first conducted a nonparamet-
ric Friedman-Nemenyi statistical test, followed by multiple Wilcoxon
signed-rank tests with a 95% confidence level (α = 0.05) (Demšar,
2006) based on the average accuracy computed on the 14 datasets. The
Friedman test yielded a p-value of 2.5 × 10−12, which is below the
α threshold, indicating that at least one method’s performance is sig-
nificantly different from the others. Given the positive result of the
Friedman test, we proceeded with the Nemenyi test, with the results
shown in Figure 1. To refine our analysis and provide deeper insights
into the relative performance of the methods, we also conducted multi-
ple Wilcoxon signed-rank tests, the results of which are summarized in
table 3.
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Dataset PSurp PWSurpUni PWSurpDeg CBoPH nCor nCorH

WebKB-Texas 77.37±3.94 78.44±3.14 78.55±3.13 76.68±3.26 67.36±2.47 68.01±2.10
WebKB-Washington 70.41±1.99 70.42±2.02 71.85±2.04 70.12±2.19 65.84±0.97 65.71±1.23
WebKB-Wisconsin 77.31±2.19 77.08±2.46 77.95±2.14 76.42±2.42 73.74±1.85 73.70±1.78
WebKB-Cornell 59.47±2.91 59.56±2.61 59.61±2.59 58.79±3.38 52.89±3.63 53.58±3.51
IMDB 77.57±1.36 77.52±1.47 77.95±1.33 79.24±1.48 79.63±1.16 79.60±1.10
Newsgroup-2cl-1 96.21±1.13 96.36±1.40 96.13±1.12 95.63±0.88 95.51±1.09 95.32±1.18
Newsgroup-2cl-2 92.76±1.64 92.50±1.82 92.41±1.78 92.59±1.60 92.47±1.57 92.56±1.72
Newsgroup-2cl-3 96.53±0.95 96.48±1.02 96.44±0.99 96.62±0.74 95.93±1.28 96.05±1.23
Newsgroup-3cl-1 93.37±1.22 93.39±1.12 93.56±1.06 93.33±1.00 92.98±1.43 92.84±1.26
Newsgroup-3cl-2 93.34±1.18 93.32±1.11 93.23±1.05 93.23±1.00 92.39±1.06 92.28±1.14
Newsgroup-3cl-3 92.74±1.23 92.78±1.35 93.28±1.32 93.26±1.02 92.43±1.35 92.45±1.27
Newsgroup-5cl-1 89.15±0.99 89.37±1.02 89.25±1.07 88.94±0.89 87.87±1.49 87.93±1.54
Newsgroup-5cl-2 84.12±1.50 84.38±1.42 84.46±1.52 83.94±1.32 82.78±1.42 82.76±1.42
Newsgroup-5cl-3 83.80±1.83 83.67±1.91 84.15±1.51 83.54±1.32 82.36±1.28 82.49±1.30

Dataset LF MRL SCT SCCT LogCom RWWR

WebKB-Texas 79.46±2.72 49.30±1.95 76.54±3.49 76.80±3.01 79.04±2.47 51.08±5.68
WebKB-Washington 71.87±1.99 64.95±1.39 69.49±2.49 68.66±2.18 71.35±2.41 65.36±1.36
WebKB-Wisconsin 79.48±1.95 50.12±0.91 77.70±2.29 77.64±2.03 78.44±2.26 63.11±4.35
WebKB-Cornell 59.96±2.65 41.91±0.09 58.92±2.89 59.13±2.94 58.85±2.88 40.22±5.65
IMDB 79.19±1.36 77.82±2.42 78.03±1.65 77.41±1.43 77.29±1.64 79.05±1.10
Newsgroup-2cl-1 94.95±1.72 94.46±1.64 95.84±1.03 97.07±0.67 95.80±1.31 94.42±1.76
Newsgroup-2cl-2 92.27±1.54 91.70±1.70 92.22±1.41 92.50±1.29 92.32±1.55 91.98±1.81
Newsgroup-2cl-3 95.53±1.56 95.02±1.26 96.00±1.00 96.06±0.75 95.27±1.59 95.65±1.19
Newsgroup-3cl-1 92.70±1.13 91.91±1.51 93.43±1.02 93.94±0.63 93.28±1.11 92.74±1.19
Newsgroup-3cl-2 92.35±1.33 91.52±1.50 92.25±1.15 93.36±0.85 92.36±1.00 92.29±1.36
Newsgroup-3cl-3 92.36±1.43 91.26±1.56 92.64±1.12 93.11±0.78 91.61±1.19 91.26±1.73
Newsgroup-5cl-1 87.95±1.17 86.26±1.67 86.96±1.15 88.00±1.03 87.77±1.46 87.48±1.26
Newsgroup-5cl-2 82.69±1.84 80.94±2.03 81.86±1.59 82.96±0.85 83.16±1.51 82.77±1.43
Newsgroup-5cl-3 82.50±1.72 80.94±1.71 82.17±1.77 83.56±1.18 82.73±1.79 82.18±1.52

TABLE 2 – Classification accuracy in percentage terms (mean ± standard deviation)
for the various classification methods across different datasets. For each dataset and
method, the final accuracy is computed following the experimental design outlined in
Subsection 3.2. The best-performing method for each dataset is highlighted in bold.

The Nemenyi test indicates that MRL and RWWR perform
significantly worse than PSurp, PWSurpUni, PWSurpDegree, cBoPH,
and SCCT. Additionally, MRL is also outperformed by LF and LogCom.
The test further shows that PWSurpDegree performs significantly better
than SCT, nCor, and nCorH.

In addition to confirming the findings of the Nemenyi test, the
Wilcoxon tests (see Tab. 3) reveal that PWSurpDegree outperforms
all the evaluated methods except for LF and PWSurpUni. The tests
further indicate that PSurp, PWSurpUni, cBoPH, and SCCT outperform
nCor, nCorH, and SCT. Moreover, they also show that MRL performs
worse than all other methods in the analysis. Finally, RWWR is outper-
formed by all methods, except for SCT and MRL.

Overall, the experiments demonstrated that the newly introduced dis-
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FIGURE 1 – Mean ranks and 95% Nemenyi confidence intervals for the 12 methods
evaluated across 14 datasets. Significant differences between methods are determined
by non-overlapping confidence intervals. The x-axis represents the average rank of
each method, where a higher rank indicates better performance. The top-performing
method (PWSurpDegree) and the lowest-ranked methods (nCor, nCorH, MRL, SCT,
and RWWR) are highlighted.

Kernel→ PSurp PWSurpUni PWSurpDegree cBoPH nCor nCorH LF MRL SCT SCCT LogCom RWWR
Kernel ↓
PSurp 1.0000 0.7148 0.0166 0.0906 0.0052 0.0052 1.0000 0.0002 0.0052 0.2676 0.1726 0.0023
PWSurpUni 0.7148 1.0000 0.1041 0.1531 0.0052 0.0067 0.7148 0.0002 0.0134 0.2958 0.0906 0.0023
PWSurpDegree 0.0166 0.1041 1.0000 0.0295 0.0040 0.0040 0.2166 0.0001 0.0002 0.0353 0.0040 0.0012
cBoPH 0.0906 0.1531 0.0295 1.0000 0.0009 0.0006 0.8552 0.0001 0.0295 0.6698 0.5016 0.0001
nCor 0.0052 0.0052 0.0040 0.0009 1.0000 0.8077 0.7609 0.0001 0.3575 0.0052 0.2412 0.0001
nCorH 0.0052 0.0067 0.0040 0.0006 0.8077 1.0000 0.8077 0.0001 0.4263 0.0085 0.2166 0.0006
LF 1.0000 0.7148 0.2166 0.8552 0.7609 0.8077 1.0000 0.0001 0.0580 0.9515 0.2676 0.0031
MRL 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 1.0000 0.0001 0.0002 0.0006 0.0107
SCT 0.0052 0.0134 0.0002 0.0295 0.3575 0.4263 0.0580 0.0001 1.0000 0.0353 0.2958 0.0676
SCCT 0.2676 0.2958 0.0353 0.6698 0.0052 0.0085 0.9515 0.0002 0.0353 1.0000 0.3910 0.0031
LogCom 0.1726 0.0906 0.0040 0.5016 0.2412 0.2166 0.2676 0.0006 0.2958 0.3910 1.0000 0.0166
RWWR 0.0023 0.0023 0.0012 0.0001 0.0001 0.0006 0.0031 0.0107 0.0676 0.0031 0.0166 1.0000

TABLE 3 – The p-values are reported from pairwise Wilcoxon signed-rank tests applied
to the results presented in table 2. The p-values below the threshold of 0.05 are
highlighted to indicate statistical significance.

tance achieved strong performance in our experimental setup. It proved
to be competitive with cBoPH and SCCT, which have consistently
shown good results across a wide range of experiments in previous
semi-supervised (Courtain et al., 2023; Courtain & Saerens, 2022; Fran-
coisse et al., 2017; Ivashkin & Chebotarev, 2022; Leleux et al., 2021)
and unsupervised tasks (Courtain et al., 2021; Ivashkin & Chebotarev,
2017; Sommer et al., 2017; Yen et al., 2009).

Additionally, in line with the findings of Courtain & Saerens (2022),
PWSurpDegree once again emerges as the most effective method. How-
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ever, unlike PWSurpUni and PSurp, this approach incorporates priors,
which could explain the observed differences in performance. Notably,
experiments have demonstrated that both methods (PSurp and PW-
Surp) show very similar performance levels when using uniform priors.
This observation was previously emphasized in an exploratory analysis,
which revealed that these two distances have a correlation exceeding
90% (see Subsection 6.3.4 in Courtain, 2022).

4 Conclusions and future work

This paper investigated a mechanism constraining the probability of
drawing a path from a bag of paths to follow a predefined discrete
probability distribution on their length (illustrated here with a Poisson
distribution). Consequently, the marginal probability of selecting a path
of a given length follows this specified distribution. The introduction
of this path-length distribution extends the basic BoP framework by
allowing for a more precise tuning of the model, according to the
application under study.

More precisely, an algorithm computing the probability of drawing
a path connecting a given source and a given target node is developed.
Then, taking minus the logarithm of this probability provides a dis-
similarity measure between the two nodes, in terms of accessibility
in the network, called the Poisson surprisal distance. This dissimilar-
ity measure is then investigated in an experimental comparison with
other state-of-the-art algorithms. The introduced measure was shown to
provide competitive results.

Future work will consider other path length probability distributions
(instead of Poisson), but also the introduction of a priori probabilities at
source and target nodes, which showed superior results in previous work
(Courtain & Saerens, 2022). In addition, it would also be interesting to
compute the expected cost between two nodes within the same formal-
ism, which would also provide a new dissimilarity measure between
nodes.
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